Displaying similar documents to “Further results on the achromatic number”

Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs

P. Francis, S. Francis Raj (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain bounds for the b- chromatic number of induced subgraphs in terms of the b-chromatic number of the original graph. This turns out to be...

The set chromatic number of a graph

Gary Chartrand, Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)

Discussiones Mathematicae Graph Theory

Similarity:

For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs...

Coloring subgraphs with restricted amounts of hues

Wayne Goddard, Robert Melville (2017)

Open Mathematics

Similarity:

We consider vertex colorings where the number of colors given to specified subgraphs is restricted. In particular, given some fixed graph F and some fixed set A of positive integers, we consider (not necessarily proper) colorings of the vertices of a graph G such that, for every copy of F in G, the number of colors it receives is in A. This generalizes proper colorings, defective coloring, and no-rainbow coloring, inter alia. In this paper we focus on the case that A is a singleton set....

Coloring with no 2-colored P 4 's.

Albertson, Michael O., Chappell, Glenn G., Kierstead, H.A., Kündgen, André, Ramamurthi, Radhika (2004)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Semi-definite positive programming relaxations for graph K 𝐧 -coloring in frequency assignment

Philippe Meurdesoif, Benoît Rottembourg (2001)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

In this paper we will describe a new class of coloring problems, arising from military frequency assignment, where we want to minimize the number of distinct n -uples of colors used to color a given set of n -complete-subgraphs of a graph. We will propose two relaxations based on Semi-Definite Programming models for graph and hypergraph coloring, to approximate those (generally) NP-hard problems, as well as a generalization of the works of Karger et al. for hypergraph coloring, to find...

Neochromatica

Panagiotis Cheilaris, Ernst Specker, Stathis Zachos (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We create and discuss several modifications to traditional graph coloring. In particular, we classify various notions of coloring in a proper hierarchy. We concentrate on grid graphs whose colorings can be represented by natural number entries in arrays with various restrictions.

Rainbow Ramsey theorems for colorings establishing negative partition relations

András Hajnal (2008)

Fundamenta Mathematicae

Similarity:

Given a function f, a subset of its domain is a rainbow subset for f if f is one-to-one on it. We start with an old Erdős problem: Assume f is a coloring of the pairs of ω₁ with three colors such that every subset A of ω₁ of size ω₁ contains a pair of each color. Does there exist a rainbow triangle? We investigate rainbow problems and results of this style for colorings of pairs establishing negative "square bracket" relations.

WORM Colorings of Planar Graphs

J. Czap, S. Jendrol’, J. Valiska (2017)

Discussiones Mathematicae Graph Theory

Similarity:

Given three planar graphs F,H, and G, an (F,H)-WORM coloring of G is a vertex coloring such that no subgraph isomorphic to F is rainbow and no subgraph isomorphic to H is monochromatic. If G has at least one (F,H)-WORM coloring, then W−F,H(G) denotes the minimum number of colors in an (F,H)-WORM coloring of G. We show that (a) W−F,H(G) ≤ 2 if |V (F)| ≥ 3 and H contains a cycle, (b) W−F,H(G) ≤ 3 if |V (F)| ≥ 4 and H is a forest with Δ (H) ≥ 3, (c) W−F,H(G) ≤ 4 if |V (F)| ≥ 5 and H is...

The upper domination Ramsey number u(4,4)

Tomasz Dzido, Renata Zakrzewska (2006)

Discussiones Mathematicae Graph Theory

Similarity:

The upper domination Ramsey number u(m,n) is the smallest integer p such that every 2-coloring of the edges of Kₚ with color red and blue, Γ(B) ≥ m or Γ(R) ≥ n, where B and R is the subgraph of Kₚ induced by blue and red edges, respectively; Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. In this paper, we show that u(4,4) ≤ 15.

A Note on Neighbor Expanded Sum Distinguishing Index

Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.