Some classes of locally connected continua
T. Maćkowiak, E. D. Tymchatyn (1987)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
T. Maćkowiak, E. D. Tymchatyn (1987)
Colloquium Mathematicae
Similarity:
Mirosława Reńska (2011)
Colloquium Mathematicae
Similarity:
We show that a metrizable continuum X is locally connected if and only if every partition in the cylinder over X between the bottom and the top of the cylinder contains a connected partition between these sets. J. Krasinkiewicz asked whether for every metrizable continuum X there exists a partiton L between the top and the bottom of the cylinder X × I such that L is a hereditarily indecomposable continuum. We answer this question in the negative. We also present a...
Joseph N. Simone (1978)
Colloquium Mathematicae
Similarity:
Lee Mohler (1984)
Colloquium Mathematicae
Similarity:
A. Emeryk, A. Szymański (1977)
Colloquium Mathematicae
Similarity:
Udayan B. Darji, Alberto Marcone (2004)
Fundamenta Mathematicae
Similarity:
We show that each of the classes of hereditarily locally connected, finitely Suslinian, and Suslinian continua is Π₁¹-complete, while the class of regular continua is Π₀⁴-complete.
J. Krasinkiewicz, Piotr Minc (1979)
Fundamenta Mathematicae
Similarity:
Alejandro Illanes (1998)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A retractible non-locally connected dendroid is constructed.
J. Grispolakis, E. D. Tymchatyn (1979)
Colloquium Mathematicae
Similarity:
Janusz Charatonik (1964)
Fundamenta Mathematicae
Similarity:
Hisao Kato (1988)
Fundamenta Mathematicae
Similarity:
Roman Mańka (1987)
Colloquium Mathematicae
Similarity:
Philip Bacon (1970)
Colloquium Mathematicae
Similarity: