Some classes of locally connected continua
T. Maćkowiak, E. D. Tymchatyn (1987)
Colloquium Mathematicae
Similarity:
T. Maćkowiak, E. D. Tymchatyn (1987)
Colloquium Mathematicae
Similarity:
Mirosława Reńska (2011)
Colloquium Mathematicae
Similarity:
We show that a metrizable continuum X is locally connected if and only if every partition in the cylinder over X between the bottom and the top of the cylinder contains a connected partition between these sets. J. Krasinkiewicz asked whether for every metrizable continuum X there exists a partiton L between the top and the bottom of the cylinder X × I such that L is a hereditarily indecomposable continuum. We answer this question in the negative. We also present a...
Joseph N. Simone (1978)
Colloquium Mathematicae
Similarity:
Lee Mohler (1984)
Colloquium Mathematicae
Similarity:
A. Emeryk, A. Szymański (1977)
Colloquium Mathematicae
Similarity:
Udayan B. Darji, Alberto Marcone (2004)
Fundamenta Mathematicae
Similarity:
We show that each of the classes of hereditarily locally connected, finitely Suslinian, and Suslinian continua is Π₁¹-complete, while the class of regular continua is Π₀⁴-complete.
J. Krasinkiewicz, Piotr Minc (1979)
Fundamenta Mathematicae
Similarity:
Alejandro Illanes (1998)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A retractible non-locally connected dendroid is constructed.
J. Grispolakis, E. D. Tymchatyn (1979)
Colloquium Mathematicae
Similarity:
Janusz Charatonik (1964)
Fundamenta Mathematicae
Similarity:
Hisao Kato (1988)
Fundamenta Mathematicae
Similarity:
Roman Mańka (1987)
Colloquium Mathematicae
Similarity:
Philip Bacon (1970)
Colloquium Mathematicae
Similarity: