Linear differential equations in Banach algebras
E. Hille (1963)
Studia Mathematica
Similarity:
E. Hille (1963)
Studia Mathematica
Similarity:
Maria D. Acosta, Vicente Montesinos (2006)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
V. Montesinos (1987)
Studia Mathematica
Similarity:
S. Levi (1982)
Banach Center Publications
Similarity:
A. Pełczyński (1968)
Studia Mathematica
Similarity:
Vlastimil Pták (1959)
Czechoslovak Mathematical Journal
Similarity:
G. Androulakis (1998)
Studia Mathematica
Similarity:
Let (x_n) be a sequence in a Banach space X which does not converge in norm, and let E be an isomorphically precisely norming set for X such that (*) ∑_n |x*(x_{n+1} - x_n)| < ∞, ∀x* ∈ E. Then there exists a subsequence of (x_n) which spans an isomorphically polyhedral Banach space. It follows immediately from results of V. Fonf that the converse is also true: If Y is a separable isomorphically polyhedral Banach space then there exists a normalized M-basis (x_n) which spans Y and...
S. Rolewicz (1987)
Studia Mathematica
Similarity: