Displaying similar documents to “Pseudotopologies with applications to one-parameter groups, von Neumann algebras, and Lie algebra representations”

Nonlinear Lie-type derivations of von Neumann algebras and related topics

Ajda Fošner, Feng Wei, Zhankui Xiao (2013)

Colloquium Mathematicae

Similarity:

Motivated by the powerful and elegant works of Miers (1971, 1973, 1978) we mainly study nonlinear Lie-type derivations of von Neumann algebras. Let 𝓐 be a von Neumann algebra without abelian central summands of type I₁. It is shown that every nonlinear Lie n-derivation of 𝓐 has the standard form, that is, can be expressed as a sum of an additive derivation and a central-valued mapping which annihilates each (n-1)th commutator of 𝓐. Several potential research topics related to our...

Commutants of von Neumann correspondences and duality of Eilenberg-Watts theorems by Rieffel and by Blecher

Michael Skeide (2006)

Banach Center Publications

Similarity:

The category of von Neumann correspondences from 𝓑 to 𝓒 (or von Neumann 𝓑-𝓒-modules) is dual to the category of von Neumann correspondences from 𝓒' to 𝓑' via a functor that generalizes naturally the functor that sends a von Neumann algebra to its commutant and back. We show that under this duality, called commutant, Rieffel's Eilenberg-Watts theorem (on functors between the categories of representations of two von Neumann algebras) switches into Blecher's Eilenberg-Watts theorem...

A note on states of von Neumann algebras

Allah-Bakhsh Thaheem (1979)

Aplikace matematiky

Similarity:

The author proves that on a von Neumann albebra (possibly of uncountable cardinality) there exists a family of states having mutually orthogonal supports (projections) converging to the identity operator.