Displaying similar documents to “Commutativity of compact selfadjoint operators”

Exponentials of normal operators and commutativity of operators: a new approach

Mohammed Hichem Mortad (2011)

Colloquium Mathematicae

Similarity:

We present a new approach to the question of when the commutativity of operator exponentials implies that of the operators. This is proved in the setting of bounded normal operators on a complex Hilbert space. The proofs are based on some results on similarities by Berberian and Embry as well as the celebrated Fuglede theorem.

n-supercyclic operators

Nathan S. Feldman (2002)

Studia Mathematica

Similarity:

We show that there are linear operators on Hilbert space that have n-dimensional subspaces with dense orbit, but no (n-1)-dimensional subspaces with dense orbit. This leads to a new class of operators, called the n-supercyclic operators. We show that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an n-supercyclic operator, there are n circles centered at the origin such that every component of the spectrum must intersect one of these circles.

Compact AC-operators

Ian Doust, Byron Walden (1996)

Studia Mathematica

Similarity:

We prove that compact AC-operators have a representation as a combination of disjoint projections which mirrors that for compact normal operators. We also show that unlike arbitrary AC-operators, compact AC-operators admit a unique splitting into real and imaginary parts, and that these parts must necessarily be compact.

Polaroid type operators and compact perturbations

Chun Guang Li, Ting Ting Zhou (2014)

Studia Mathematica

Similarity:

A bounded linear operator T acting on a Hilbert space is said to be polaroid if each isolated point in the spectrum is a pole of the resolvent of T. There are several generalizations of the polaroid property. We investigate compact perturbations of polaroid type operators. We prove that, given an operator T and ε > 0, there exists a compact operator K with ||K|| < ε such that T + K is polaroid. Moreover, we characterize those operators for which a certain polaroid type property...