The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A characterization of probability measures by f-moments”

Functionals on transient stochastic processes with independent increments

K. Urbanik (1992)

Studia Mathematica

Similarity:

The paper is devoted to the study of integral functionals ʃ 0 f ( X ( t , ω ) ) d t for a wide class of functions f and transient stochastic processes X(t,ω) with stationary and independent increments. In particular, for nonnegative processes a random analogue of the Tauberian theorem is obtained.

Stability of stochastic processes defined by integral functionals

K. Urbanik (1992)

Studia Mathematica

Similarity:

The paper is devoted to the study of integral functionals ʃ 0 f ( X ( t , ω ) ) d t for continuous nonincreasing functions f and nonnegative stochastic processes X(t,ω) with stationary and independent increments. In particular, a concept of stability defined in terms of the functionals ʃ 0 f ( a X ( t , ω ) ) d t with a ∈ (0,∞) is discussed.

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz (1996)

Studia Mathematica

Similarity:

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

Two-sided estimates for the approximation numbers of Hardy-type operators in L and L¹

W. Evans, D. Harris, J. Lang (1998)

Studia Mathematica

Similarity:

In [2] and [3] upper and lower estimates and asymptotic results were obtained for the approximation numbers of the operator T : L p ( + ) L p ( + ) defined by ( T f ) ( x ) v ( x ) ʃ 0 u ( t ) f ( t ) d t when 1 < p < ∞. Analogous results are given in this paper for the cases p = 1,∞ not included in [2] and [3].

The converse of the Hölder inequality and its generalizations

Janusz Matkowski (1994)

Studia Mathematica

Similarity:

Let (Ω,Σ,μ) be a measure space with two sets A,B ∈ Σ such that 0 < μ (A) < 1 < μ (B) < ∞ and suppose that ϕ and ψ are arbitrary bijections of [0,∞) such that ϕ(0) = ψ(0) = 0. The main result says that if ʃ Ω x y d μ ϕ - 1 ( ʃ Ω ϕ x d μ ) ψ - 1 ( ʃ Ω ψ x d μ ) for all μ-integrable nonnegative step functions x,y then ϕ and ψ must be conjugate power functions. If the measure space (Ω,Σ,μ) has one of the following properties: (a) μ (A) ≤ 1 for every A ∈ Σ of finite measure; (b) μ (A) ≥ 1 for every A ∈ Σ of positive measure, then...