Displaying similar documents to “A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.”

Discontinuity of the product in multiplier algebras.

Mohamed Oudadess (1990)

Publicacions Matemàtiques

Similarity:

Entire functions operate in complete locally A-convex algebras but not continuously. Actually squaring is not always continuous. The counterexample we give is multiplier algebra.

Representation of locally convex algebras.

L. Oubbi (1994)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

We deal with the representation of locally convex algebras. On one hand as subalgebras of some weighted space CV(X) and on the other hand, in the case of uniformly A-convex algebras, as inductive limits of Banach algebras. We also study some questions on the spectrum of a locally convex algebra.

On locally pseudoconvexes square algebras.

Jorma Arhippainen (1995)

Publicacions Matemàtiques

Similarity:

Let A be an algebra over the field of complex numbers with a (Hausdorff) topology given by a family Q = {q|λ ∈ Λ} of square preserving r-homogeneous seminorms (r ∈ (0, 1]). We shall show that (A, T(Q)) is a locally m-convex algebra. Furthermore we shall show that A is commutative.

The three-space-problem for locally-m-convex algebras.

Susanne Dierolf, Thomas Heintz (2003)

RACSAM

Similarity:

We prove that a locally convex algebra A with jointly continuous multiplication is already locally-m-convex, if A contains a two-sided ideal I such that both I and the quotient algebra A/I are locally-m-convex. An application to the behaviour of the associated locally-m-convex topology on ideals is given.