Displaying similar documents to “Sufficient conditions for weighted Gabushin inequalities”

Weighted inequalities for monotone and concave functions

Hans Heinig, Lech Maligranda (1995)

Studia Mathematica

Similarity:

Characterizations of weight functions are given for which integral inequalities of monotone and concave functions are satisfied. The constants in these inequalities are sharp and in the case of concave functions, constitute weighted forms of Favard-Berwald inequalities on finite and infinite intervals. Related inequalities, some of Hardy type, are also given.

First and second order Opial inequalities

Steven Bloom (1997)

Studia Mathematica

Similarity:

Let T γ f ( x ) = ʃ 0 x k ( x , y ) γ f ( y ) d y , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form ʃ 0 ( i = 1 n | T γ i f ( x ) | q i | ) | f ( x ) | q 0 w ( x ) d x C ( ʃ 0 | f ( x ) | p v ( x ) d x ) ( q 0 + + q n ) / p . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent q 0 = 0 . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold. ...

Weighted inequalities for monotone functions.

L. Maligranda (1997)

Collectanea Mathematica

Similarity:

We give characterizations of weights for which reverse inequalities of the Hölder type for monotone functions are satisfied. Our inequalities with general weights and with sharp constants complement previous results.