Singular measures and the key of G.
Stephen M. Buckley, Paul MacManus (2000)
Publicacions Matemàtiques
Similarity:
We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G set of full Lebesgue measure.
Stephen M. Buckley, Paul MacManus (2000)
Publicacions Matemàtiques
Similarity:
We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G set of full Lebesgue measure.
Ján Haluška (1991)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Ricardo Faro Rivas, Juan A. Navarro, Juan Sancho (1994)
Extracta Mathematicae
Similarity:
Robert Kaufman, Jang-Mei Wu (1995)
Revista Matemática Iberoamericana
Similarity:
Doubling measures appear in relation to quasiconformal mappings of the unit disk of the complex plane onto itself. Each such map determines a homeomorphism of the unit circle on itself, and the problem arises, which mappings f can occur as boundary mappings?
L. Rodríguez-Piazza (1995)
Studia Mathematica
Similarity:
We prove that the range of a vector measure determines the σ-finiteness of its variation and the derivability of the measure. Let F and G be two countably additive measures with values in a Banach space such that the closed convex hull of the range of F is a translate of the closed convex hull of the range of G; then F has a σ-finite variation if and only if G does, and F has a Bochner derivative with respect to its variation if and only if G does. This complements a result of [Ro] where...
Schaerf, H.M. (1949)
Portugaliae mathematica
Similarity:
Noboru Endou (2017)
Formalized Mathematics
Similarity:
The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.
Noboru Endou (2016)
Formalized Mathematics
Similarity:
In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.
Edward Marczewski (1953)
Fundamenta Mathematicae
Similarity: