The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Conical measures and properties of a vector measure determined by its range”

Singular measures and the key of G.

Stephen M. Buckley, Paul MacManus (2000)

Publicacions Matemàtiques

Similarity:

We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G set of full Lebesgue measure.

Two problems on doubling measures.

Robert Kaufman, Jang-Mei Wu (1995)

Revista Matemática Iberoamericana

Similarity:

Doubling measures appear in relation to quasiconformal mappings of the unit disk of the complex plane onto itself. Each such map determines a homeomorphism of the unit circle on itself, and the problem arises, which mappings f can occur as boundary mappings?

Derivability, variation and range of a vector measure

L. Rodríguez-Piazza (1995)

Studia Mathematica

Similarity:

We prove that the range of a vector measure determines the σ-finiteness of its variation and the derivability of the measure. Let F and G be two countably additive measures with values in a Banach space such that the closed convex hull of the range of F is a translate of the closed convex hull of the range of G; then F has a σ-finite variation if and only if G does, and F has a Bochner derivative with respect to its variation if and only if G does. This complements a result of [Ro] where...

Fubini’s Theorem on Measure

Noboru Endou (2017)

Formalized Mathematics

Similarity:

The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.

Product Pre-Measure

Noboru Endou (2016)

Formalized Mathematics

Similarity:

In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.