The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Almost sure approximation of unbounded operators in L 2 ( X , A , μ )

Two-sided estimates for the approximation numbers of Hardy-type operators in L and L¹

W. Evans, D. Harris, J. Lang (1998)

Studia Mathematica

Similarity:

In [2] and [3] upper and lower estimates and asymptotic results were obtained for the approximation numbers of the operator T : L p ( + ) L p ( + ) defined by ( T f ) ( x ) v ( x ) ʃ 0 u ( t ) f ( t ) d t when 1 < p < ∞. Analogous results are given in this paper for the cases p = 1,∞ not included in [2] and [3].

On spectral representation for selfadjoint operators. Expansion in generalized eigenelements

Eberhard Gerlach (1965)

Annales de l'institut Fourier

Similarity:

L’auteur reprend l’étude classique de la représentation spectrale d’un opérateur auto-adjoint A dans un espace de Hilbert . Il y ajoute des précisions nouvelles qui conduisent à la définition du projecteur infinitésimal P ) λ ) sur l’espace des vecteurs propres généralisés ( λ ) . Il obtient, par conséquent, des énoncés plus précis de bien des théorèmes classiques. Il introduit ensuite la notion de “ A -expansibilité” d’un sous-ensemble S . Cette notion est appliquée à l’étude des espaces fonctionnels...