On the ergodic theorems (II) (Ergodic theory of continued fractions)
C. Ryll-Nardzewski (1951)
Studia Mathematica
Similarity:
C. Ryll-Nardzewski (1951)
Studia Mathematica
Similarity:
Ryotaro Sato (1995)
Studia Mathematica
Similarity:
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...
I. Assam, J. Woś (1990)
Studia Mathematica
Similarity:
Idris Assani, Zoltán Buczolich, Daniel R. Mauldin (2004)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Ryotaro Sato (1977)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Ryotaro Sato (1980)
Studia Mathematica
Similarity: