The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the exponential stability and dichotomy of C 0 -semigroups”

Almost periodic and strongly stable semigroups of operators

Vũ Phóng (1997)

Banach Center Publications

Similarity:

This paper is chiefly a survey of results obtained in recent years on the asymptotic behaviour of semigroups of bounded linear operators on a Banach space. From our general point of view, discrete families of operators T n : n = 0 , 1 , . . . on a Banach space X (discrete one-parameter semigroups), one-parameter C 0 -semigroups T ( t ) : t 0 on X (strongly continuous one-parameter semigroups), are particular cases of representations of topological abelian semigroups. Namely, given a topological abelian semigroup S, a family...

On α-times integrated C-semigroups and the abstract Cauchy problem

Chung-Cheng Kuo, Sen-Yen Shaw (2000)

Studia Mathematica

Similarity:

This paper is concerned with α-times integrated C-semigroups for α > 0 and the associated abstract Cauchy problem: u ' ( t ) = A u ( t ) + t α - 1 Γ ( α ) x , t >0; u(0) = 0. We first investigate basic properties of an α-times integrated C-semigroup which may not be exponentially bounded. We then characterize the generator A of an exponentially bounded α-times integrated C-semigroup, either in terms of its Laplace transforms or in terms of existence of a unique solution of the above abstract Cauchy problem for every x...