The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Banach spaces in which all multilinear forms are weakly sequentially continuous”

An approach to Schreier's space.

Jesús M. Fernández Castillo, Manuel González (1991)

Extracta Mathematicae

Similarity:

In 1930, J. Schreier [10] introduced the notion of admissibility in order to show that the now called weak-Banach-Saks property does not hold in every Banach space. A variation of this idea produced the Schreier's space (see [1],[2]). This is the space obtained by completion of the space of finite sequences with respect to the following norm: ||x||S = sup(A admissible)j ∈ A |xj|, ...

Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces

M. Jimenéz Sevilla, Rafael Payá (1998)

Studia Mathematica

Similarity:

For each natural number N, we give an example of a Banach space X such that the set of norm attaining N-linear forms is dense in the space of all continuous N-linear forms on X, but there are continuous (N+1)-linear forms on X which cannot be approximated by norm attaining (N+1)-linear forms. Actually,X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous result for homogeneous polynomials.

Polynomials and geometry of Banach spaces.

Joaquín M. Gutiérrez, Jesús A. Jaramillo, José G. Llavona (1995)

Extracta Mathematicae

Similarity:

In this paper we survey a large part of the results on polynomials on Banach spaces that have been obtained in recent years. We mainly look at how the polynomials behave in connection with certain geometric properties of the spaces.