Displaying similar documents to “The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures”

Ergodic properties of skew products with Lasota-Yorke type maps in the base

Zbigniew Kowalski (1993)

Studia Mathematica

Similarity:

We consider skew products T ( x , y ) = ( f ( x ) , T e ( x ) y ) preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and T i , i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T....

Absolutely continuous dynamics and real coboundary cocycles in L p -spaces, 0 < p < ∞

Ana Alonso, Jialin Hong, Rafael Obaya (2000)

Studia Mathematica

Similarity:

Conditions for the existence of measurable and integrable solutions of the cohomology equation on a measure space are deduced. They follow from the study of the ergodic structure corresponding to some families of bidimensional linear difference equations. Results valid for the non-measure-preserving case are also obtained

BV coboundaries over irrational rotations

Dalibor Volný (1997)

Studia Mathematica

Similarity:

For every irrational rotation we construct a coboundary which is continuous except at a single point where it has a jump, is nondecreasing, and has zero derivative almost everywhere.

Exactness of skew products with expanding fibre maps

Thomas Bogenschütz, Zbigniew Kowalski (1996)

Studia Mathematica

Similarity:

We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.