Sequential theory of the convolution of distributions
J. Mikusiński (1968)
Studia Mathematica
Similarity:
J. Mikusiński (1968)
Studia Mathematica
Similarity:
S. R. Yadava (1972)
Matematički Vesnik
Similarity:
A. Kamiński (1982)
Studia Mathematica
Similarity:
Kislisçman, Adem (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Charles W. Swartz (1975)
Czechoslovak Mathematical Journal
Similarity:
Nedeljkov, M., Pilipović, S. (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Anna Kula (2011)
Banach Center Publications
Similarity:
The q-convolution is a measure-preserving transformation which originates from non-commutative probability, but can also be treated as a one-parameter deformation of the classical convolution. We show that its commutative aspect is further certified by the fact that the q-convolution satisfies all of the conditions of the generalized convolution (in the sense of Urbanik). The last condition of Urbanik's definition, the law of large numbers, is the crucial part to be proved and the non-commutative...
E. Gesztelyi (1970)
Annales Polonici Mathematici
Similarity:
Kazimierz Urbanik (1987)
Colloquium Mathematicum
Similarity:
Kilicman, Adem, Kamel Ariffin, Muhammad Rezal (2002)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Z. Zieleźny (1967)
Studia Mathematica
Similarity: