The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a 1 -factor of the fourth power of a connected graph”

Forbidden Pairs and (k,m)-Pancyclicity

Charles Brian Crane (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G on n vertices is said to be (k, m)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each r ∈ {m, m+1, . . . , n}. This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree, Gould, Jacobson, and Lesniak in 2004. The notion of (k, m)-pancyclicity provides one way to measure the prevalence of cycles in a graph. We consider pairs of subgraphs that, when forbidden, guarantee hamiltonicity for 2-connected graphs...