The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The conjugate of the product of operators”

Recent developments in hypercyclicity.

Karl-Goswin Grosse-Erdmann (2003)

RACSAM

Similarity:

In these notes we report on recent progress in the theory of hypercyclic and chaotic operators. Our discussion will be guided by the following fundamental problems: How do we recognize hypercyclic operators? How many vectors are hypercyclic? How many operators are hypercyclic? How big can non-dense orbits be?

Some properties of N-supercyclic operators

P. S. Bourdon, N. S. Feldman, J. H. Shapiro (2004)

Studia Mathematica

Similarity:

Let T be a continuous linear operator on a Hausdorff topological vector space 𝓧 over the field ℂ. We show that if T is N-supercyclic, i.e., if 𝓧 has an N-dimensional subspace whose orbit under T is dense in 𝓧, then T* has at most N eigenvalues (counting geometric multiplicity). We then show that N-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an N-dimensional subspace cannot be dense in an (N+1)-dimensional space. Finally, we show that a...

n-supercyclic operators

Nathan S. Feldman (2002)

Studia Mathematica

Similarity:

We show that there are linear operators on Hilbert space that have n-dimensional subspaces with dense orbit, but no (n-1)-dimensional subspaces with dense orbit. This leads to a new class of operators, called the n-supercyclic operators. We show that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an n-supercyclic operator, there are n circles centered at the origin such that every component of the spectrum must intersect one of these circles.

Hypercyclic sequences of operators

Fernando León-Saavedra, Vladimír Müller (2006)

Studia Mathematica

Similarity:

A sequence (Tₙ) of bounded linear operators between Banach spaces X,Y is said to be hypercyclic if there exists a vector x ∈ X such that the orbit Tₙx is dense in Y. The paper gives a survey of various conditions that imply the hypercyclicity of (Tₙ) and studies relations among them. The particular case of X = Y and mutually commuting operators Tₙ is analyzed. This includes the most interesting cases (Tⁿ) and (λₙTⁿ) where T is a fixed operator and λₙ are complex numbers. We also study...

Dense range perturbations of hypercyclic operators

Luis Bernal-Gonzalez (2002)

Colloquium Mathematicae

Similarity:

We show that if (Tₙ) is a hypercyclic sequence of linear operators on a locally convex space and (Sₙ) is a sequence of linear operators such that the image of each orbit under every linear functional is non-dense then the sequence (Tₙ + Sₙ) has dense range. Furthermore, it is proved that if T,S are commuting linear operators in such a way that T is hypercyclic and all orbits under S satisfy the above non-denseness property then T - S has dense range. Corresponding statements for operators...

Exponentials of normal operators and commutativity of operators: a new approach

Mohammed Hichem Mortad (2011)

Colloquium Mathematicae

Similarity:

We present a new approach to the question of when the commutativity of operator exponentials implies that of the operators. This is proved in the setting of bounded normal operators on a complex Hilbert space. The proofs are based on some results on similarities by Berberian and Embry as well as the celebrated Fuglede theorem.

On the norm of a projection onto the space of compact operators

Joosep Lippus, Eve Oja (2007)

Studia Mathematica

Similarity:

Let X and Y be Banach spaces and let 𝓐(X,Y) be a closed subspace of 𝓛(X,Y), the Banach space of bounded linear operators from X to Y, containing the subspace 𝒦(X,Y) of compact operators. We prove that if Y has the metric compact approximation property and a certain geometric property M*(a,B,c), where a,c ≥ 0 and B is a compact set of scalars (Kalton's property (M*) = M*(1, {-1}, 1)), and if 𝓐(X,Y) ≠ 𝒦(X,Y), then there is no projection from 𝓐(X,Y) onto 𝒦(X,Y) with norm less than...