Examples of nuclear systems
Ed Dubinsky (1972)
Studia Mathematica
Similarity:
Ed Dubinsky (1972)
Studia Mathematica
Similarity:
C. Piñeiro (1996)
Collectanea Mathematica
Similarity:
Arne Persson (1969)
Studia Mathematica
Similarity:
Seán Dineen, Reinhold Meise, Dietmar Vogt (1984)
Bulletin de la Société Mathématique de France
Similarity:
M. de Wilde (1972)
Studia Mathematica
Similarity:
W. Wojtyński (1970)
Studia Mathematica
Similarity:
Wojciech Banaszczyk (1993)
Studia Mathematica
Similarity:
Nuclear groups form a class of abelian topological groups which contains LCA groups and nuclear locally convex spaces, and is closed with respect to certain natural operations. In nuclear locally convex spaces, weakly summable families are strongly summable, and strongly summable are absolutely summable. It is shown that these theorems can be generalized in a natural way to nuclear groups.
Jean Schmets, Manuel Valdivia (2003)
RACSAM
Similarity:
Si K es un compacto no vacío en R, damos una condición suficiente para que la inyección canónica de ε(K) en ε(K) sea nuclear. Consideramos el caso mixto y obtenemos la existencia de un operador de extensión nuclear de ε(F) en ε(R) donde F es un subconjunto cerrado propio de R y A y D son discos de Banach adecuados. Finalmente aplicamos este último resultado al caso Borel, es decir cuando F = {0}.
J. Holub (1972)
Studia Mathematica
Similarity:
Philip J. Boland, Seán Dineen (1978)
Bulletin de la Société Mathématique de France
Similarity:
Seán Dineen (1995)
Studia Mathematica
Similarity:
We introduce a decomposition of holomorphic functions on Fréchet spaces which reduces to the Taylor series expansion in the case of Banach spaces and to the monomial expansion in the case of Fréchet nuclear spaces with basis. We apply this decomposition to obtain examples of Fréchet spaces E for which the τ_{ω} and τ_{δ} topologies on H(E) coincide. Our result includes, with simplified proofs, the main known results-Banach spaces with an unconditional basis and Fréchet nuclear spaces...