Displaying similar documents to “Weighted norm inequalities for the Hardy-Little-wood maximal function for one parameter rectangles”

Weighted inequalities and the shape of approach regions

José García, Javier Soria (1999)

Studia Mathematica

Similarity:

We characterize geometric properties of a family of approach regions by means of analytic properties of the class of weights related to the boundedness of the maximal operator associated with this family.

A weighted version of Journé's lemma.

Donald Krug, Alberto Torchinsky (1994)

Revista Matemática Iberoamericana

Similarity:

In this paper we discuss a weighted version of Journé's covering lemma, a substitution for Whitney decomposition of an open set in R where squares are replaced by rectangles. We then apply this result to obtain a sharp version of the atomic decomposition of the weighted Hardy spaces H (R x R ) and a description of their duals when p is close to 1.

Weighted norm inequalities for general maximal operators.

Carlos Pérez Moreno (1991)

Publicacions Matemàtiques

Similarity:

The main purpose of this paper is to use some of the results and techniques in [9] to further investigate weighted norm inequalities for Hardy-Littlewood type maximal operators.

Weighted norm inequalities on spaces of homogeneous type

Qiyu Sun (1992)

Studia Mathematica

Similarity:

We give a characterization of the weights (u,w) for which the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w). We give a characterization of the weight functions w (respectively u) for which there exists a nontrivial u (respectively w > 0 almost everywhere) such that the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w).