Displaying similar documents to “Toeplitz operators related to certain domains in C n

Spectral approximation for Segal-Bargmann space Toeplitz operators

Albrecht Böttcher, Hartmut Wolf (1997)

Banach Center Publications

Similarity:

Let A stand for a Toeplitz operator with a continuous symbol on the Bergman space of the polydisk N or on the Segal-Bargmann space over N . Even in the case N = 1, the spectrum Λ(A) of A is available only in a few very special situations. One approach to gaining information about this spectrum is based on replacing A by a large “finite section”, that is, by the compression A n of A to the linear span of the monomials z 1 k 1 . . . z N k N : 0 k j n . Unfortunately, in general the spectrum of A n does not mimic the spectrum...

Properties of two variables Toeplitz type operators

Elżbieta Król-Klimkowska, Marek Ptak (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

The investigation of properties of generalized Toeplitz operators with respect to the pairs of doubly commuting contractions (the abstract analogue of classical two variable Toeplitz operators) is proceeded. We especially concentrate on the condition of existence such a non-zero operator. There are also presented conditions of analyticity of such an operator.

Asymmetric truncated Toeplitz operators equal to the zero operator

Joanna Jurasik, Bartosz Łanucha (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Asymmetric truncated Toeplitz operators are compressions of multiplication operators acting between two model spaces. These operators are natural generalizations of truncated Toeplitz operators. In this paper we describe symbols of asymmetric truncated Toeplitz operators equal to the zero operator.

Some results on (strong) asymptotic Toeplitzness and Hankelness

Mehdi Nikpour (2019)

Czechoslovak Mathematical Journal

Similarity:

Based on the results in A. Feintuch (1989), this work sheds light upon some interesting properties of strongly asymptotically Toeplitz and Hankel operators, and relations between these two classes of operators. Indeed, among other things, two main results here are (a) vanishing Toeplitz and Hankel operators forms an ideal, and (b) finding the distance of a strongly asymptotically Toeplitz operator from the set of vanishing Toeplitz operators.

Projections onto the spaces of Toeplitz operators

Marek Ptak (2005)

Annales Polonici Mathematici

Similarity:

Projections onto the spaces of all Toeplitz operators on the N-torus and the unit sphere are constructed. The constructions are also extended to generalized Toeplitz operators and applied to show hyperreflexivity results.