Some diophantine equations solvable by identities
A. Mąkowski (1972)
Acta Arithmetica
Similarity:
A. Mąkowski (1972)
Acta Arithmetica
Similarity:
Ron Blei (1975)
Studia Mathematica
Similarity:
Bohuslav Diviš, Břetislav Novák (1970)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity: