On the integrability of the ergodic maximal function
Burgess Davis (1982)
Studia Mathematica
Similarity:
Burgess Davis (1982)
Studia Mathematica
Similarity:
Ryotaro Sato (1995)
Studia Mathematica
Similarity:
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...
J. Choksi, M. Nadkarni (2000)
Colloquium Mathematicae
Similarity:
It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite...
Dalibor Volný (1989)
Aplikace matematiky
Similarity:
The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds.
Lasha Ephremidze (2002)
Fundamenta Mathematicae
Similarity:
It is proved that the ergodic maximal operator is one-to-one.
J. Michael Steele (1989)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
I. Assam, J. Woś (1990)
Studia Mathematica
Similarity: