An absolute continuity for positive operators on Banach lattices.
Feldman, W., Piston, C., Piston, Calvin E. (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Feldman, W., Piston, C., Piston, Calvin E. (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity:
David Pérez-García (2004)
Studia Mathematica
Similarity:
We prove that, for 1 ≤ p ≤ q < 2, each multiple p-summing multilinear operator between Banach spaces is also q-summing. We also give an improvement of this result for an image space of cotype 2. As a consequence, we obtain a characterization of Hilbert-Schmidt multilinear operators similar to the linear one given by A. Pełczyński in 1967. We also give a multilinear generalization of Grothendieck's Theorem for GT spaces.
Andreas Defant, Mieczysław Mastyło (2003)
Studia Mathematica
Similarity:
The Banach operator ideal of (q,2)-summing operators plays a fundamental role within the theory of s-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for (E,2)-summing operators, E a symmetric Banach sequence space.
Mikhail Popov (2011)
Banach Center Publications
Similarity:
Narrow operators are those operators defined on function spaces which are "small" at signs, i.e., at {-1,0,1}-valued functions. We summarize here some results and problems on them. One of the most interesting things is that if E has an unconditional basis then each operator on E is a sum of two narrow operators, while the sum of two narrow operators on L₁ is narrow. Recently this notion was generalized to vector lattices. This generalization explained the phenomena of sums: the set of...
Vladimir M. Kadets, Roman V. Shvidkoy, Dirk Werner (2001)
Studia Mathematica
Similarity:
Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).
Teresa Alvarez (1988)
Publicacions Matemàtiques
Similarity:
In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of l.
Stanislaw Kwapien (1972)
Mémoires de la Société Mathématique de France
Similarity:
Charles E. Cleaver (1972)
Colloquium Mathematicae
Similarity:
Miroslav Sova (1982)
Časopis pro pěstování matematiky
Similarity:
Roman Drnovšek (2012)
Studia Mathematica
Similarity:
Let A and B be bounded operators on a Banach lattice E such that the commutator C = AB - BA and the product BA are positive operators. If the product AB is a power-compact operator, then C is a quasi-nilpotent operator having a triangularizing chain of closed ideals of E. This answers an open question posed by Bračič et al. [Positivity 14 (2010)], where the study of positive commutators of positive operators was initiated.
Nicole Tomczak (1970)
Studia Mathematica
Similarity: