A remark on Plancherel's theorem for Banach space valued functions
Stephen Vági (1969)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Stephen Vági (1969)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
José Luis Torrea (1991)
Publicacions Matemàtiques
Similarity:
The aim of these pages is to give the reader an idea about the first part of the mathematical life of José Luis Rubio de Francia.
Per Sjölin (1979)
Banach Center Publications
Similarity:
W. Littman, C. McCarthy, N. Riviere (1968)
Studia Mathematica
Similarity:
Christoph M. Thiele (2002)
Publicacions Matemàtiques
Similarity:
We survey the theory of multilinear singular integral operators with modulation symmetry. The basic example for this theory is the bilinear Hilbert transform and its multilinear variants. We outline a proof of boundedness of Carleson's operator which shows the close connection of this operator to multilinear singular integrals. We discuss particular multilinear singular integrals which historically arose in the study of eigenfunctions of Schrödinger operators. ...
Anthony Carbery (1986)
Revista Matemática Iberoamericana
Similarity:
The purposes of this paper may be described as follows: (i) to provide a useful substitute for the Cotlar-Stein lemma for Lp-spaces (the orthogonality conditions are replaced by certain fairly weak smoothness asumptions); (ii) to investigate the gap between the Hörmander multiplier theorem and the Littman-McCarthy-Rivière example - just how little regularity is really needed? (iii) to simplify and extend the work of Duoandikoetxea...
Frank Zimmermann (1989)
Studia Mathematica
Similarity:
Carlos Segovia, José L. Torrea (1991)
Publicacions Matemàtiques
Similarity:
Michael T. Lacey (1996)
Publicacions Matemàtiques
Similarity:
On the real line, let the Fourier transform of kn be k'n(ξ) = k'(ξ-n) where k'(ξ) is a smooth compactly supported function. Consider the bilinear operators Sn(f, g)(x) = ∫ f(x+y)g(x-y)kn(y) dy. If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove that Σ∞ n=-∞ ||Sn(f,g)||2 2...