An atomic theory of ergodic spaces
R. Caballero, A. de la Torre (1985)
Studia Mathematica
Similarity:
R. Caballero, A. de la Torre (1985)
Studia Mathematica
Similarity:
F. Martín-Reyes, P. Ortega Salvador (1988)
Studia Mathematica
Similarity:
Ryotaro Sato (1987)
Studia Mathematica
Similarity:
Yves Derriennic (2000)
Colloquium Mathematicae
Similarity:
For a Cesàro bounded operator in a Hilbert space or a reflexive Banach space the mean ergodic theorem does not hold in general. We give an additional geometrical assumption which is sufficient to imply the validity of that theorem. Our result yields the mean ergodic theorem for positive Cesàro bounded operators in (1 < p < ∞). We do not use the tauberian theorem of Hardy and Littlewood, which was the main tool of previous authors. Some new examples, interesting for summability...
Ezio Marchi, Felipe Zo (1981)
Studia Mathematica
Similarity:
E. Atencia, F. Martin-Reyes (1984)
Studia Mathematica
Similarity:
A. de la Torre, F. Martín-Reyes (1987)
Studia Mathematica
Similarity:
F. J. Martin-Reyes (1986)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
E. Atencia, A. de la Torre (1982)
Studia Mathematica
Similarity:
Ryotaro Sato (1973)
Studia Mathematica
Similarity: