Generalized convolutions
K. Urbanik (1964)
Studia Mathematica
Similarity:
K. Urbanik (1964)
Studia Mathematica
Similarity:
R. Jajte (1977)
Studia Mathematica
Similarity:
K. Urbanik (1986)
Studia Mathematica
Similarity:
K. Urbanik (1973)
Studia Mathematica
Similarity:
Joel Zinn (1976)
Studia Mathematica
Similarity:
Gavin Brown, William Morak (1977)
Studia Mathematica
Similarity:
K. Urbanik (1984)
Studia Mathematica
Similarity:
Stephen M. Buckley, Paul MacManus (2000)
Publicacions Matemàtiques
Similarity:
We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G set of full Lebesgue measure.
K. Urbanik (1996)
Studia Mathematica
Similarity:
Given a real-valued continuous function ƒ on the half-line [0,∞) we denote by P*(ƒ) the set of all probability measures μ on [0,∞) with finite ƒ-moments (n = 1,2...). A function ƒ is said to have the identification propertyif probability measures from P*(ƒ) are uniquely determined by their ƒ-moments. A function ƒ is said to be a Bernstein function if it is infinitely differentiable on the open half-line (0,∞) and is completely monotone for some nonnegative integer n. The purpose...