Some topological properties of stable norms.
J. Bastero Eleizalde, J. M. Mira Ros (1987)
Extracta Mathematicae
Similarity:
J. Bastero Eleizalde, J. M. Mira Ros (1987)
Extracta Mathematicae
Similarity:
Tadeusz Figiel, Ryszard Frankiewicz, Ryszard A. Komorowski, Czesław Ryll-Nardzewski (2003)
Studia Mathematica
Similarity:
In this paper we make use of a new concept of φ-stability for Banach spaces, where φ is a function. If a Banach space X and the function φ satisfy some natural conditions, then X is saturated with subspaces that are φ-stable (cf. Lemma 2.1 and Corollary 7.8). In a φ-stable Banach space one can easily construct basic sequences which have a property P(φ) defined in terms of φ (cf. Theorem 4.5). This leads us, for appropriate functions φ, to new results on the existence...
Evarist Giné (1983)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Ryszard Graślewicz (1992)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
W. Krakowiak (1979)
Colloquium Mathematicae
Similarity:
Alfred Tong, Donald Wilken (1971)
Studia Mathematica
Similarity:
José A. Alvarez, Teresa Alvarez, Manuel González (1989)
Extracta Mathematicae
Similarity:
J. Auslander, P. Seibert (1964)
Annales de l'institut Fourier
Similarity:
Les auteurs étudient la notion de prolongement au sens de T. Ura et ses relations avec la notion d’ensembles positivement invariants. La stabilité au sens de Liapounoff est équivalente à l’invariance par prolongement. Les auteurs dégagent ensuite la notion de “prolongements abstraits” et les notions de stabilité correspondantes; la stabilité absolue (associée au prolongement minimal transitif) et la stabilité asymptotique jouent un rôle important.
Byunghan Kim, A. Pillay (2001)
Fundamenta Mathematicae
Similarity:
We discuss various conjectures and problems around the issue of when and whether stable formulas are responsible for forking in simple theories. We prove that if the simple theory T has strong stable forking then any complete type is a nonforking extension of a complete type which is axiomatized by instances of stable formulas. We also give another treatment of the first author's result which identifies canonical bases in supersimple theories.