Finite difference approximations for nonlinear first order partial differential equations.
Baranowska, Anna, Zdzisław, Kamont (2002)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Baranowska, Anna, Zdzisław, Kamont (2002)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Cecchi, Mariella, Došlá, Zuzana, Marini, Mauro (2000)
Georgian Mathematical Journal
Similarity:
Agarwal, Ravi P., Grace, Said R., O'Regan, Donal (2004)
Georgian Mathematical Journal
Similarity:
Kȩpczyńska, Anna (2005)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Witold A. J. Kosmala (1994)
Annales Polonici Mathematici
Similarity:
We state and prove two oscillation results which deal with bounded solutions of a forced higher order differential equation. One proof involves the use of a nonlinear functional.
Balamohan, B., Kuznetsov, A., Tanny, Stephen (2007)
Journal of Integer Sequences [electronic only]
Similarity:
Sang, Yanbin, Su, Hua (2009)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Bartušek, Miroslav (1996)
Georgian Mathematical Journal
Similarity:
Mosurski, Ryszard (2005)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Koplatadze, R., Kvinikadze, G. (1994)
Georgian Mathematical Journal
Similarity:
Polák, L. (2004)
Georgian Mathematical Journal
Similarity:
Xingbao Wu (1995)
Annales Polonici Mathematici
Similarity:
A nonlinear differential equation of the form (q(x)k(x)u')' = F(x,u,u') arising in models of infiltration of water is considered, together with the corresponding differential equation with a positive parameter λ, (q(x)k(x)u')' = λF(x,u,u'). The theorems about existence, uniqueness, boundedness of solution and its dependence on the parameter are established.
Svatoslav Staněk (1993)
Annales Polonici Mathematici
Similarity:
A differential equation of the form (q(t)k(u)u')' = F(t,u)u' is considered and solutions u with u(0) = 0 are studied on the halfline [0,∞). Theorems about the existence, uniqueness, boundedness and dependence of solutions on a parameter are given.