The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Robust Bayesian estimation in a normal model with asymmetric loss function”

An admissible estimator of a lower-bounded scale parameter under squared-log error loss function

Eisa Mahmoudi, Hojatollah Zakerzadeh (2011)

Kybernetika

Similarity:

Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributions. Bayes estimator of a lower-bounded scale parameter, under the squared-log error loss function...

On estimation of parameters in the bivariate linear errors-in-variables model

Anna Czapkiewicz (1999)

Applicationes Mathematicae

Similarity:

We discuss some methods of estimation in bivariate errors-in-variables linear models. We also suggest a method of constructing consistent estimators in the case when the error disturbances have the normal distribution with unknown parameters. It is based on the theory of estimating variance components in linear models. A simulation study is presented which compares this estimator with the maximum likelihood one.

Theory of parameter estimation

Ryszard Zieliński (1997)

Banach Center Publications

Similarity:

0. Introduction and summary. The analysis of data from the gravitational-wave detectors that are currently under construction in several countries will be a challenging problem. The reason is that gravitational-vawe signals are expected to be extremely weak and often very rare. Therefore it will be of great importance to implement optimal statistical methods to extract all possible information about the signals from the noisy data sets. Careful statistical analysis based on correct application...

Minimax Prediction for the Multinomial and Multivariate Hypergeometric Distributions

Alicja Jokiel-Rokita (1998)

Applicationes Mathematicae

Similarity:

A problem of minimax prediction for the multinomial and multivariate hypergeometric distribution is considered. A class of minimax predictors is determined for estimating linear combinations of the unknown parameter and the random variable having the multinomial or the multivariate hypergeometric distribution.

Estimation of nuisance parameters for inference based on least absolute deviations

Wojciech Niemiro (1995)

Applicationes Mathematicae

Similarity:

Statistical inference procedures based on least absolute deviations involve estimates of a matrix which plays the role of a multivariate nuisance parameter. To estimate this matrix, we use kernel smoothing. We show consistency and obtain bounds on the rate of convergence.