Displaying similar documents to “Nonlinear Time-Fractional Differential Equations in Combustion Science”

Maximum Principle and Its Application for the Time-Fractional Diffusion Equations

Luchko, Yury (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary In the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative,...

Professor Rudolf Gorenflo and his Contribution to Fractional Calculus

Luchko, Yury, Mainardi, Francesco, Rogosin, Sergei (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary This paper presents a brief overview of the life story and professional career of Prof. R. Gorenflo - a well-known mathematician, an expert in the field of Differential and Integral Equations, Numerical Mathematics, Fractional Calculus and Applied Analysis, an interesting conversational partner, an experienced colleague, and a real friend. Especially his role in the modern Fractional...

Solving Fractional Diffusion-Wave Equations Using a New Iterative Method

Daftardar-Gejji, Varsha, Bhalekar, Sachin (2008)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 31B10 In the present paper a New Iterative Method [1] has been employed to find solutions of linear and non-linear fractional diffusion-wave equations. Illustrative examples are solved to demonstrate the efficiency of the method. * This work has partially been supported by the grant F. No. 31-82/2005(SR) from the University Grants Commission, N. Delhi, India.

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

Fractional Derivatives in Spaces of Generalized Functions

Stojanović, Mirjana (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo We generalize the two forms of the fractional derivatives (in Riemann-Liouville and Caputo sense) to spaces of generalized functions using appropriate techniques such as the multiplication of absolutely continuous function by the Heaviside function, and the analytical continuation. As an application, we give the two forms of the fractional derivatives of discontinuous functions in spaces of...