Displaying similar documents to “Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s”

Numerical Solution of Fractional Diffusion-Wave Equation with two Space Variables by Matrix Method

Garg, Mridula, Manohar, Pratibha (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05. In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines. ...

Inhomogeneous Fractional Diffusion Equations

Baeumer, Boris, Kurita, Satoko, Meerschaert, Mark (2005)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05 Fractional diffusion equations are abstract partial differential equations that involve fractional derivatives in space and time. They are useful to model anomalous diffusion, where a plume of particles spreads in a different manner than the classical diffusion equation predicts. An initial value problem involving a space-fractional diffusion equation is an abstract Cauchy problem, whose analytic...

Caputo-Type Modification of the Erdélyi-Kober Fractional Derivative

Luchko, Yury, Trujillo, Juan (2007)

Fractional Calculus and Applied Analysis

Similarity:

2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05 The Caputo fractional derivative is one of the most used definitions of a fractional derivative along with the Riemann-Liouville and the Grünwald- Letnikov ones. Whereas the Riemann-Liouville definition of a fractional derivative is usually employed in mathematical texts and not so frequently in applications, and the Grünwald-Letnikov definition – for numerical approximation of both Caputo and Riemann-Liouville...

Solution of Space-Time Fractional Schrödinger Equation Occurring in Quantum Mechanics

Saxena, R., Saxena, Ravi, Kalla, S. (2010)

Fractional Calculus and Applied Analysis

Similarity:

Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10. The object of this article is to present the computational solution of one-dimensional space-time fractional Schrödinger equation occurring in quantum mechanics. The method followed in deriving the solution is that of joint Laplace and Fourier transforms. The solution is derived in a closed and computational form in terms of the H-function....

Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey

Mainardi, Francesco, Gorenflo, Rudolf (2007)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05, The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classica theory of linear viscoelasticity, we contrast these two types of fractiona derivatives in their...

Fractional Integration and Fractional Differentiation of the M-Series

Sharma, Manoj (2008)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 33C60, 44A15 In this paper a new special function called as M-series is introduced. This series is a particular case of the H-function of Inayat-Hussain. The M-series is interesting because the pFq -hypergeometric function and the Mittag-Leffler function follow as its particular cases, and these functions have recently found essential applications in solving problems in physics, biology, engineering and applied sciences. Let us note...

Suggestion from the Past?

Machado, J., Jesus, Isabel (2004)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30 The generalization of the concept of derivative to non-integer values goes back to the beginning of the theory of differential calculus. Nevertheless, its application in physics and engineering remained unexplored up to the last two decades. Recent research motivated the establishment of strategies taking advantage of the Fractional Calculus (FC) in the modeling and control of many phenomena. In fact, many...

Generalized Fractional Evolution Equation

Da Silva, J. L., Erraoui, M., Ouerdiane, H. (2007)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20 In this paper we study the generalized Riemann-Liouville (resp. Caputo) time fractional evolution equation in infinite dimensions. We show that the explicit solution is given as the convolution between the initial condition and a generalized function related to the Mittag-Leffler function. The fundamental solution corresponding to the Riemann-Liouville time fractional evolution equation does...

Linear Fractional PDE, Uniqueness of Global Solutions

Schäfer, Ingo, Kempfle, Siegmar, Nolte, Bodo (2005)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 47A60, 30C15. In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.

Some Fractional Extensions of the Temperature Field Problem in Oil Strata

Boyadjiev, Lyubomir (2007)

Fractional Calculus and Applied Analysis

Similarity:

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands...