The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Overdetermined Strata in General Families of Polynomials”

On Root Arrangements of Polynomial-Like Functions and their Derivatives

Kostov, Vladimir (2005)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 12D10. We show that for n = 4 they are realizable either by hyperbolic polynomials of degree 4 or by non-hyperbolic polynomials of degree 6 whose fourth derivatives never vanish (these are a particular case of the so-called hyperbolic polynomial-like functions of degree 4).

Even and Old Overdetermined Strata for Degree 6 Hyperbolic Polynomials

Ezzaldine, Hayssam, Kostov, Vladimir Petrov (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 12D10. In the present paper we consider degree 6 hyperbolic polynomials (HPs) in one variable (i.e. real and with all roots real). We are interested in such HPs whose number of equalities between roots of the polynomial and/or its derivatives is higher than expected. We give the complete study of the four families of such degree 6 even HPs and also of HPs which are primitives of degree 5 HPs. Research partially supported...

On Arrangements of Real Roots of a Real Polynomial and Its Derivatives

Kostov, Vladimir (2003)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 12D10. We prove that all arrangements (consistent with the Rolle theorem and some other natural restrictions) of the real roots of a real polynomial and of its s-th derivative are realized by real polynomials.

On Roots of Polynomials and Algebraically Closed Fields

Christoph Schwarzweller (2017)

Formalized Mathematics

Similarity:

In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].