Displaying similar documents to “Computations with Witt vectors of length 3

A class of transcendental numbers with explicit g-adic expansion and the Jacobi-Perron algorithm

Jun-ichi Tamura (1992)

Acta Arithmetica

Similarity:

In this paper, we give transcendental numbers φ and ψ such that (i) both φ and ψ have explicit g-adic expansions, and simultaneously, (ii) the vector t ( φ , ψ ) has an explicit expression in the Jacobi-Perron algorithm (cf. Theorem 1). Our results can be regarded as a higher-dimensional version of some of the results in [1]-[5] (see also [6]-[8], [10], [11]). The numbers φ and ψ have some connection with algebraic numbers with minimal polynomials x³ - kx² - lx - 1 satisfying (1.1) k ≥ l ≥0, k...

On the Carlitz problem on the number of solutions to some special equations over finite fields

Ioulia N. Baoulina (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We consider an equation of the type a 1 x 1 2 + + a n x n 2 = b x 1 x n over the finite field 𝔽 q = 𝔽 p s . Carlitz obtained formulas for the number of solutions to this equation when n = 3 and when n = 4 and q 3 ( mod 4 ) . In our earlier papers, we found formulas for the number of solutions when d = gcd ( n - 2 , ( q - 1 ) / 2 ) = 1 or 2 or 4 ; and when d > 1 and - 1 is a power of p modulo  2 d . In this paper, we obtain formulas for the number of solutions when d = 2 t , t 3 , p 3 or 5 ( mod 8 ) or p 9 ( mod 16 ) . For general case, we derive lower bounds for the number of solutions.