Displaying similar documents to “Noether‘s variational theorem II and the BV formalism”

Gauge-natural field theories and Noether theorems: canonical covariant conserved currents

Palese, Marcella, Winterroth, Ekkehart

Similarity:

Summary: We specialize in a new way the second Noether theorem for gauge-natural field theories by relating it to the Jacobi morphism and show that it plays a fundamental role in the derivation of canonical covariant conserved quantities. In particular we show that Bergmann-Bianchi identities for such theories hold true covariantly and canonically only along solutions of generalized gauge-natural Jacobi equations. Vice versa, all vertical parts of gauge-natural lifts of infinitesimal...

Symmetries in finite order variational sequences

Mauro Francaviglia, Marcella Palese, Raffaele Vitolo (2002)

Czechoslovak Mathematical Journal

Similarity:

We refer to Krupka’s variational sequence, i.e. the quotient of the de Rham sequence on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among the morphisms of the variational sequence there are the Euler-Lagrange operator and the Helmholtz operator. In this note we show that the Lie derivative operator passes to the quotient in the variational sequence. Then we define the variational Lie derivative as an operator on the sheaves of the variational sequence....