The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On internal characterizations of complete regularity and Wallman-type compactifications”

On dense subspaces satisfying stronger separation axioms

Ofelia Teresa Alas, Mihail G. Tkachenko, Vladimir Vladimirovich Tkachuk, Richard Gordon Wilson, Ivan V. Yashchenko (2001)

Czechoslovak Mathematical Journal

Similarity:

We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than c has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight c which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of π -weight less than 𝔭 has a dense completely Hausdorff (and hence Urysohn) subspace....

A non-Tychonoff relatively normal subspace

Ellen Mir (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This paper presents a new consistent example of a relatively normal subspace which is not Tychonoff.