Displaying similar documents to “On compact non-Kählerian manfolds admitting an almost Kähler structure”

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3 -structure

Francisco Martín Cabrera (1998)

Czechoslovak Mathematical Journal

Similarity:

We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds...

Some properties of para-Kähler-Walker metrics

Mustafa Özkan, Murat İşcan (2014)

Annales Polonici Mathematici

Similarity:

A Walker 4-manifold is a pseudo-Riemannian manifold (M₄,g) of neutral signature, which admits a field of parallel null 2-planes. We study almost paracomplex structures on 4-dimensional para-Kähler-Walker manifolds. In particular, we obtain conditions under which these almost paracomplex structures are integrable, and the corresponding para-Kähler forms are symplectic. We also show that Petean's example of a nonflat indefinite Kähler-Einstein 4-manifold is a special case of our constructions. ...

On compact astheno-Kähler manifolds

Koji Matsuo, Takao Takahashi (2001)

Colloquium Mathematicae

Similarity:

We prove that every compact balanced astheno-Kähler manifold is Kähler, and that there exists an astheno-Kähler structure on the product of certain compact normal almost contact metric manifolds.

3-submersions from QR-hypersurfaces of quaternionic Kähler manifolds

Gabriel Eduard Vîlcu (2010)

Annales Polonici Mathematici

Similarity:

We study 3-submersions from a QR-hypersurface of a quaternionic Kähler manifold onto an almost quaternionic hermitian manifold. We also prove the non-existence of quaternionic submersions between quaternionic Kähler manifolds which are not locally hyper-Kähler.

3-K-contact Wolf spaces

Włodzimierz Jelonek (2003)

Annales Polonici Mathematici

Similarity:

The aim of this paper is to give an easy explicit description of 3-K-contact structures on SO(3)-principal fibre bundles over Wolf quaternionic Kähler manifolds.

ω-pluripolar sets and subextension of ω-plurisubharmonic functions on compact Kähler manifolds

Le Mau Hai, Nguyen Van Khue, Pham Hoang Hiep (2007)

Annales Polonici Mathematici

Similarity:

We establish some results on ω-pluripolarity and complete ω-pluripolarity for sets in a compact Kähler manifold X with fundamental form ω. Moreover, we study subextension of ω-psh functions on a hyperconvex domain in X and prove a comparison principle for the class 𝓔(X,ω) recently introduced and investigated by Guedj-Zeriahi.