Some properties of convex metric spaces
B. Krakus (1972)
Fundamenta Mathematicae
Similarity:
B. Krakus (1972)
Fundamenta Mathematicae
Similarity:
Tadeusz Rzeżuchowski (2012)
Open Mathematics
Similarity:
We describe some known metrics in the family of convex sets which are stronger than the Hausdorff metric and propose a new one. These stronger metrics preserve in some sense the facial structure of convex sets under small changes of sets.
Inese Bula (2005)
Banach Center Publications
Similarity:
The paper introduces a notion of strictly convex metric space and strictly convex metric space with round balls. These objects generalize the well known concept of strictly convex Banach space. We prove some fixed point theorems in strictly convex metric spaces with round balls.
Taras Banakh, Ivan Hetman (2011)
Studia Mathematica
Similarity:
We prove that a closed convex subset C of a complete linear metric space X is polyhedral in its closed linear hull if and only if no infinite subset A ⊂ X∖ C can be hidden behind C in the sense that [x,y]∩ C ≠ ∅ for any distinct x,y ∈ A.
Tadeusz Dobrowolski, Jan van Mill (2006)
Fundamenta Mathematicae
Similarity:
We characterize the AR property in convex subsets of metric linear spaces in terms of certain near-selections.
V. W. Bryant (1970)
Compositio Mathematica
Similarity:
R. Duda (1970)
Fundamenta Mathematicae
Similarity:
Tulsi Dass Narang (1981)
Archivum Mathematicum
Similarity: