Bounded operators on tensor products of Banach lattices
N. J. Nielsen (1980-1981)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
N. J. Nielsen (1980-1981)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
N.J. Nielsen, S. Heinrich (1981)
Mathematica Scandinavica
Similarity:
Ju. A. Abramovič, L. P. Janovskiĭ (1982)
Colloquium Mathematicae
Similarity:
Julio Flores, Pedro Tradacete (2008)
Studia Mathematica
Similarity:
It is proved that every positive Banach-Saks operator T: E → F between Banach lattices E and F factors through a Banach lattice with the Banach-Saks property, provided that F has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds-Fremlin sense, are obtained for the class of Banach-Saks operators.
Julio Flores, César Ruiz (2006)
Studia Mathematica
Similarity:
Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.
N. Ghoussoub, W.B. Johnson (1987)
Mathematische Zeitschrift
Similarity:
S. Kaijser (1981)
Monatshefte für Mathematik
Similarity:
C.D. Aliprantis, Owen Burkinshaw (1980)
Mathematische Zeitschrift
Similarity:
William Feldmann (1988)
Mathematische Zeitschrift
Similarity:
L. Tzafriri (1979-1980)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
Feldman, W., Piston, C., Piston, Calvin E. (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity: