The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Legendre transformation in differential spaces”

Some remarks on a problem of C. Alsina.

J. Matkowski, M. Sablik (1986)

Stochastica

Similarity:

Equation [1] f(x+y) + f (f(x)+f(y)) = f (f(x+f(y)) + f(f(x)+y)) has been proposed by C. Alsina in the class of continuous and decreasing involutions of (0,+∞). General solution of [1] is not known yet. Nevertheless we give solutions of the following equations which may be derived from [1]: [2] f(x+1) + f (f(x)+1) = 1, [3] f(2x) + f(2f(x)) = f(2f(x + f(x))). Equation [3] leads to a Cauchy functional equation: ...

On measures of concordance.

Marco Scarsini (1984)

Stochastica

Similarity:

We give a general definition of concordance and a set of axioms for measures of concordance. We then consider a family of measures satisfying these axioms. We compare our results with known results, in the discrete case.

Representation of continuous associative functions.

Barbara Baccheli (1986)

Stochastica

Similarity:

Strengthened forms of Ling's representation theorem concerning a class of continuous associative functions are given: Firstly the monotonicity condition is removed. Then the associativity condition is replaced by the power associativity.

On the extension of Rosenbrock's theory in algebraic design on multivariable controllers.

Manuel de la Sen (1986)

Stochastica

Similarity:

System similarity and system strict equivalence concepts from Rosenbrock's theory on linear systems are used to establish algebraic conditions of model matching as well as an algebraic method for design of centralized compensators. The ideas seem to be extensible without difficulty to a class of decentralized control.

On symmetries and parallelogram spaces.

Mirko Polonijo (1985)

Stochastica

Similarity:

The notion of a TST-space is introduced and its connection with a parallelogram space is given. The existence of a TST-space is equivalent to the existence of a parallelogram space, which is a new characterization of a parallelogram space. The structure of a TST-space is described in terms of an abelian group.