Displaying similar documents to “On the effect of temperature and velocity relaxation in two-phase flow models”

On the effect of temperature and velocity relaxation in two-phase flow models

Pedro José Martínez Ferrer, Tore Flåtten, Svend Tollak Munkejord (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed...

Modeling and Simulation of Thermo-Fluid-Electrochemical Ion Flow in Biological Channels

Riccardo Sacco, Fabio Manganini, Joseph W. Jerome (2015)

Molecular Based Mathematical Biology

Similarity:

In this articlewe address the study of ion charge transport in the biological channels separating the intra and extracellular regions of a cell. The focus of the investigation is devoted to including thermal driving forces in the well-known velocity-extended Poisson-Nernst-Planck (vPNP) electrodiffusion model. Two extensions of the vPNP system are proposed: the velocity-extended Thermo-Hydrodynamic model (vTHD) and the velocity-extended Electro-Thermal model (vET). Both formulations...

A mathematical model for fluid-glucose-albumin transport in peritoneal dialysis

Roman Cherniha, Joanna Stachowska-Piętka, Jacek Waniewski (2014)

International Journal of Applied Mathematics and Computer Science

Similarity:

A mathematical model for fluid and solute transport in peritoneal dialysis is constructed. The model is based on a threecomponent nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Our aim is to model ultrafiltration of water combined with inflow of glucose to the tissue and removal of albumin from the body during dialysis, by finding the spatial distributions of glucose and albumin...