Displaying similar documents to “Limitation and Regulation of Ecological Populations: a Meta-analysis of Tipula paludosa Field Data”

The Basic Reproduction Number of an Infectious Disease in a Stable Population: The Impact of Population Growth Rate on the Eradication Threshold

H. Inaba, H. Nishiura (2008)

Mathematical Modelling of Natural Phenomena

Similarity:

Although age-related heterogeneity of infection has been addressed in various epidemic models assuming a demographically stationary population, only a few studies have explicitly dealt with age-specific patterns of transmission in growing or decreasing population. To discuss the threshold principle realistically, the present study investigates an age-duration-structured SIR epidemic model assuming a stable host population, as the first scheme to account for the non-stationality of the...

Population Dynamics of Grayling: Modelling Temperature and Discharge Effects

S. Charles, J.-P. Mallet, H. Persat (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We propose a matrix population modelling approach in order to describe the dynamics of a grayling (, L. 1758) population living in the Ain river (France). We built a Leslie like model, which integrates the climate changes in terms of temperature and discharge. First, we show how temperature and discharge can be related to life history traits like survival and reproduction. Second, we show how to use the population model to precisely examine the life cycle of grayling : estimated numbers...

Mathematical Modeling Describing the Effect of Fishing and Dispersion on Hermaphrodite Population Dynamics

S. Ben Miled, A. Kebir, M. L. Hbid (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In order to study the impact of fishing on a grouper population, we propose in this paper to model the dynamics of a grouper population in a fishing territory by using structured models. For that purpose, we have integrated the natural population growth, the fishing, the competition for shelter and the dispersion. The dispersion was considered as a consequence of the competition. First we prove, that the grouper stocks may be less sensitive...

Analysis of Synchronization in a Neural Population by a Population Density Approach

A. Garenne, J. Henry, C. O. Tarniceriu (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In this paper we deal with a model describing the evolution in time of the density of a neural population in a state space, where the state is given by Izhikevich’s two - dimensional single neuron model. The main goal is to mathematically describe the occurrence of a significant phenomenon observed in neurons populations, the . To this end, we are making the transition to phase density population, and use Malkin theorem to calculate...

Do Demographic and Disease Structures Affect the Recurrence of Epidemics ?

A. Castellazzo, A. Mauro, C. Volpe, E. Venturino (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

In this paper we present an epidemic model affecting an age-structured population. We show by numerical simulations that this demographic structure can induce persistent oscillations in the epidemic. The model is then extended to encompass a stage-structured disease within an age-dependent population. In this case as well, persistent oscillations are observed in the infected as well as in the whole population.

The impatience mechanism as a diversity maintaining and saddle crossing strategy

Iwona Karcz-Duleba (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

The impatience mechanism diversifies the population and facilitates escaping from a local optima trap by modifying fitness values of poorly adapted individuals. In this paper, two versions of the impatience mechanism coupled with a phenotypic model of evolution are studied. A population subordinated to a basic version of the impatience mechanism polarizes itself and evolves as a dipole centered around an averaged individual. In the modified version, the impatience mechanism is supplied...