Displaying similar documents to “Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary”

A hyperbolic model for convection-diffusion transport problems in CFD: numerical analysis and applications.

Héctor Gómez, Ignasi Colominas, Fermín L. Navarrina, Manuel Casteleiro (2008)

RACSAM

Similarity:

In this paper we present a numerical study of the hyperbolic model for convection-diffusion transport problems that has been recently proposed by the authors. This model avoids the infinite speed paradox, inherent to the standard parabolic model and introduces a new parameter called relaxation time. This parameter plays the role of an “inertia” for the movement of the pollutant. The analysis presented herein is twofold: first, we perform an accurate study of the 1D steady-state equations...

Refined wing asymptotics for the Merton and Kou jump diffusion models

Stefan Gerhold, Johannes F. Morgenbesser, Axel Zrunek (2015)

Banach Center Publications

Similarity:

Refining previously known estimates, we give large-strike asymptotics for the implied volatility of Merton's and Kou's jump diffusion models. They are deduced from call price approximations by transfer results of Gao and Lee. For the Merton model, we also analyse the density of the underlying and show that it features an interesting "almost power law" tail.

Growth of heterotrophe and autotrophe populations in an isolated terrestrial environment

Piotr Paweł Szopa, Monika Joanna Piotrowska (2011)

Applicationes Mathematicae

Similarity:

We consider the model, proposed by Dawidowicz and Zalasiński, describing the interactions between the heterotrophic and autotrophic organisms coexisting in a terrestrial environment with available oxygen. We modify this model by assuming intraspecific competition between heterotrophic organisms. Moreover, we introduce a diffusion of both types of organisms and oxygen. The basic properties of the extended model are examined and illustrated by numerical simulations.

Solution of contaminant transport with adsorption in porous media by the method of characteristics

Jozef Kacur, Roger Van Keer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.