Displaying similar documents to “Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems”

Phytoplankton Dynamics: from the Behavior of Cells to a Transport Equation

R. Rudnicki, R. Wieczorek (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We present models of the dynamics of phytoplankton aggregates. We start with an individual-based model in which aggregates can grow, divide, joint and move randomly. Passing to infinity with the number of individuals, we obtain a model which describes the space-size distribution of aggregates. The density distribution function satisfies a non-linear transport equation, which contains terms responsible for the growth of phytoplankton aggregates, their fragmentation, coagulation, and...

Dynamics of Erythroid Progenitors and Erythroleukemia

N. Bessonov, F. Crauste, I. Demin, V. Volpert (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

The paper is devoted to mathematical modelling of erythropoiesis, production of red blood cells in the bone marrow. We discuss intra-cellular regulatory networks which determine self-renewal and differentiation of erythroid progenitors. In the case of excessive self-renewal, immature cells can fill the bone marrow resulting in the development of leukemia. We introduce a parameter characterizing the strength of mutation. Depending on its value, leukemia will or will not develop. ...