Displaying similar documents to “A Discrete Model For Pattern Formation In Volatile Thin Films”

Refined wing asymptotics for the Merton and Kou jump diffusion models

Stefan Gerhold, Johannes F. Morgenbesser, Axel Zrunek (2015)

Banach Center Publications

Similarity:

Refining previously known estimates, we give large-strike asymptotics for the implied volatility of Merton's and Kou's jump diffusion models. They are deduced from call price approximations by transfer results of Gao and Lee. For the Merton model, we also analyse the density of the underlying and show that it features an interesting "almost power law" tail.

Irregularity of Turing patterns in the Thomas model with a unilateral term

Rybář, Vojtěch, Vejchodský, Tomáš

Similarity:

In this contribution we add a unilateral term to the Thomas model and investigate the resulting Turing patterns. We show that the unilateral term yields nonsymmetric and irregular patterns. This contrasts with the approximately symmetric and regular patterns of the classical Thomas model. In addition, the unilateral term yields Turing patterns even for smaller ratio of diffusion constants. These conclusions accord with the recent findings about the influence of the unilateral term in...

Growth of heterotrophe and autotrophe populations in an isolated terrestrial environment

Piotr Paweł Szopa, Monika Joanna Piotrowska (2011)

Applicationes Mathematicae

Similarity:

We consider the model, proposed by Dawidowicz and Zalasiński, describing the interactions between the heterotrophic and autotrophic organisms coexisting in a terrestrial environment with available oxygen. We modify this model by assuming intraspecific competition between heterotrophic organisms. Moreover, we introduce a diffusion of both types of organisms and oxygen. The basic properties of the extended model are examined and illustrated by numerical simulations.

Phytoplankton Dynamics: from the Behavior of Cells to a Transport Equation

R. Rudnicki, R. Wieczorek (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We present models of the dynamics of phytoplankton aggregates. We start with an individual-based model in which aggregates can grow, divide, joint and move randomly. Passing to infinity with the number of individuals, we obtain a model which describes the space-size distribution of aggregates. The density distribution function satisfies a non-linear transport equation, which contains terms responsible for the growth of phytoplankton aggregates, their fragmentation, coagulation, and...