The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Data-driven penalty calibration: A case study for Gaussian mixture model selection”

Data-driven penalty calibration: A case study for gaussian mixture model selection

Cathy Maugis, Bertrand Michel (2011)

ESAIM: Probability and Statistics

Similarity:

In the companion paper [C. Maugis and B. Michel, A non asymptotic penalized criterion for Gaussian mixture model selection. 15 (2011) 41–68] , a penalized likelihood criterion is proposed to select a Gaussian mixture model among a specific model collection. This criterion depends on unknown constants which have to be calibrated in practical situations. A “slope heuristics” method is described and experimented to deal with this practical problem. In a model-based clustering context,...

A non asymptotic penalized criterion for Gaussian mixture model selection

Cathy Maugis, Bertrand Michel (2012)

ESAIM: Probability and Statistics

Similarity:

Specific Gaussian mixtures are considered to solve simultaneously variable selection and clustering problems. A non asymptotic penalized criterion is proposed to choose the number of mixture components and the relevant variable subset. Because of the non linearity of the associated Kullback-Leibler contrast on Gaussian mixtures, a general model selection theorem for maximum likelihood estimation proposed by [Massart  Springer, Berlin (2007). Lectures from the 33rd Summer School on...

A non asymptotic penalized criterion for gaussian mixture model selection

Cathy Maugis, Bertrand Michel (2011)

ESAIM: Probability and Statistics

Similarity:

Specific Gaussian mixtures are considered to solve simultaneously variable selection and clustering problems. A non asymptotic penalized criterion is proposed to choose the number of mixture components and the relevant variable subset. Because of the non linearity of the associated Kullback-Leibler contrast on Gaussian mixtures, a general model selection theorem for maximum likelihood estimation proposed by [Massart  Springer, Berlin (2007). Lectures from the 33rd Summer School on Probability...

Efficient robust nonparametric estimation in a semimartingale regression model

Victor Konev, Serguei Pergamenshchikov (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

The paper considers the problem of robust estimating a periodic function in a continuous time regression model with the dependent disturbances given by a general square integrable semimartingale with an unknown distribution. An example of such a noise is a non-Gaussian Ornstein–Uhlenbeck process with jumps (see ( (2001) 167–241), ( (2008) 879–908)). An adaptive model selection procedure, based on the weighted least square estimates, is proposed. Under...

Partition-based conditional density estimation

S. X. Cohen, E. Le Pennec (2013)

ESAIM: Probability and Statistics

Similarity:

We propose a general partition-based strategy to estimate conditional density with candidate densities that are piecewise constant with respect to the covariate. Capitalizing on a general penalized maximum likelihood model selection result, we prove, on two specific examples, that the penalty of each model can be chosen roughly proportional to its dimension. We first study a strategy in which the densities are chosen piecewise conditional according to the variable. We then consider Gaussian...

Adaptive density estimation for clustering with gaussian mixtures

C. Maugis-Rabusseau, B. Michel (2013)

ESAIM: Probability and Statistics

Similarity:

Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally -Hölder with moment and tail conditions are considered. We show that this...