A recurrence relation for the “inv" analogue of -Eulerian polynomials.
Chow, Chak-On (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Chow, Chak-On (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Bergeron, F., Lamontagne, F. (2004)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Amdeberhan, Tewodros, Zeilberger, Doron (1997)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Hung, Ying-Chao, Chen, Robert W., Zame, Alan, Chen, May-Ru (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Abalo, Elom K., Abalo, Kokou Y. (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Stanley, Richard P. (2005)
Journal of Integer Sequences [electronic only]
Similarity:
Garsia, A.M., Goupil, A. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Welker, Volkmar (1997)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
McNamara, Peter, Reutenauer, Christophe (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Indong, Dexter Jane L., Peralta, Gilbert R. (2008)
Journal of Integer Sequences [electronic only]
Similarity:
Mohammad Jafari, Ali Madadi (2014)
Open Mathematics
Similarity:
In this paper we prove that, up to a scalar multiple, the determinant is the unique generalized matrix function that preserves the product or remains invariant under similarity. Also, we present a new proof for the known result that, up to a scalar multiple, the ordinary characteristic polynomial is the unique generalized characteristic polynomial for which the Cayley-Hamilton theorem remains true.
Zelevinsky, Andrei (2007)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Egge, Eric S., Mansour, Toufik (2005)
Integers
Similarity: