The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On partitionable, confidentially connected and unbreakable graphs.”

On H -closed graphs

Pavel Tomasta, Eliška Tomová (1988)

Czechoslovak Mathematical Journal

Similarity:

Structural Properties of Recursively Partitionable Graphs with Connectivity 2

Olivier Baudon, Julien Bensmail, Florent Foucaud, Monika Pilśniak (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A connected graph G is said to be arbitrarily partitionable (AP for short) if for every partition (n1, . . . , np) of |V (G)| there exists a partition (V1, . . . , Vp) of V (G) such that each Vi induces a connected subgraph of G on ni vertices. Some stronger versions of this property were introduced, namely the ones of being online arbitrarily partitionable and recursively arbitrarily partitionable (OL-AP and R-AP for short, respectively), in which the subgraphs induced by a partition...

Characterizations of the Family of All Generalized Line Graphs-Finite and Infinite-and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2

Gurusamy Rengasamy Vijayakumar (2013)

Discussiones Mathematicae Graph Theory

Similarity:

The infimum of the least eigenvalues of all finite induced subgraphs of an infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327], the class of all finite graphs whose least eigenvalues ≥ −2 has been classified: (1) If a (finite) graph is connected and its least eigenvalue is at least −2, then either it is a generalized line graph or it is represented...