The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Velocity and Coriolis quadrics of robot-manipulators.”

Mechanics

Stefan Banach

Similarity:

CONTENTS Preface................ III CHAPTER I. THEORY OF VECTORS I. Operations on vectors § 1. Preliminary definitions.................. 1 § 2. Components of a vector.................. 2 § 3. Sum and difference of vectors.................. 3 § 4. Product of a vector by a number.................. 4 § 5. Components of a sum and product.................. 5 § 6. Resolution of a vector.................. 6 § 7. Scalar product.................. 7 § 8. Vector product.................. 9 § 9....

Stability and instability in nineteenth-century fluid mechanics

Olivier Darrigol (2002)

Revue d'histoire des mathématiques

Similarity:

The stability or instability of a few basic flows was conjectured, debated, and sometimes proved in the nineteenth century. Motivations varied from turbulence observed in real flows to permanence expected in hydrodynamic theories of matter. Contemporary mathematics often failed to provide rigorous answers, and personal intuitions sometimes gave wrong results. Yet some of the basic ideas and methods of the modern theory of hydrodynamic instability occurred to the elite of British and...

Numerical modeling of the movement of a rigid particle in viscous fluid

Josef Ježek, Stanislav Saic, Karel Segeth (1999)

Applications of Mathematics

Similarity:

Modeling the movement of a rigid particle in viscous fluid is a problem physicists and mathematicians have tried to solve since the beginning of this century. A general model for an ellipsoidal particle was first published by Jeffery in the twenties. We exploit the fact that Jeffery was concerned with formulae which can be used to compute numerically the velocity field in the neighborhood of the particle during his derivation of equations of motion of the particle. This is our principal...