An estimate of the Fourier coefficients of functions belonging to the Besov class.
Beriša, Muharem C. (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Beriša, Muharem C. (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
M. Bożejko, T. Pytlik (1972)
Colloquium Mathematicae
Similarity:
M. Mathias (1923)
Mathematische Zeitschrift
Similarity:
Leonede De Michele, Marina Di Natale, Delfina Roux (1990)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
In this paper a very general method is given in order to reconstruct a periodic function knowing only an approximation of its Fourier coefficients.
Zhang, Qing-Hua, Chen, Shuiming, Qu, Yuanyuan (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
(1970)
Czechoslovak Mathematical Journal
Similarity:
T. W. Körner (1981)
Colloquium Mathematicae
Similarity:
Lafferty, John D., Rockmore, Daniel (1992)
Experimental Mathematics
Similarity:
Richard M. Aron, David Pérez-García, Juan B. Seoane-Sepúlveda (2006)
Studia Mathematica
Similarity:
We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.
Raimond Struble (1984)
Studia Mathematica
Similarity: