Varieties of modular p-algebras
Tibor Katriňák (1974)
Colloquium Mathematicae
Similarity:
Tibor Katriňák (1974)
Colloquium Mathematicae
Similarity:
Shoji Koizumi (1979)
Mathematische Annalen
Similarity:
Shigeaki Tsuyumine (1985)
Inventiones mathematicae
Similarity:
Boris M. Vernikov (2007)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A semigroup variety is called if it is a modular element of the lattice of all semigroup varieties. We obtain a strong necessary condition for a semigroup variety to be modular. In particular, we prove that every modular nil-variety may be given by 0-reduced identities and substitutive identities only. (An identity is called if the words and depend on the same letters and may be obtained from by renaming of letters.) We completely determine all commutative modular varieties...
Kenneth A. Ribet (1980)
Mathematische Annalen
Similarity:
Xavier Guitart (2012)
Acta Arithmetica
Similarity:
G. van der Geer (1982)
Mathematische Annalen
Similarity:
Robert MacPherson, Mark McConnell (1993)
Inventiones mathematicae
Similarity:
R. Weissauer (1992)
Journal für die reine und angewandte Mathematik
Similarity:
D. Choi (2006)
Acta Arithmetica
Similarity:
Besser, Amnon (1997)
Documenta Mathematica
Similarity: